Provider Level Analyses of Screening Mammography Use in Women with Limited Life Expectancy

James S. Goodwin, MD
George and Cynthia Mitchell Distinguished Chair in Geriatric Medicine
Director, Sealy Center on Aging

and

Alai Tan, MD, PhD
Assistant Professor, Department of Preventive Medicine and Community Health
Senior Biostatistician, Sealy Center on Aging
UTMB Galveston
Outline

- Two studies
 - Integrating Age and Comorbidity to Assess Screening Mammography Utilization
 - Variation Among Providers in Screening Mammography for Women with Limited Life Expectancies
Integrating Age and Comorbidity to Assess Screening Mammography Utilization
Background

Screening mammography

• Benefits
 • Early detection of breast cancer
 • Early treatment
 • Better survival

• Harms
 • False-positives and follow-up diagnostic tests
 • Over-diagnosis and over-treatment
Background (con’t)

- Current cancer screening guidelines base their recommendations primarily on age
 - USPSTF guideline
 - Biennial screening mammography in women aged 50-74 years
 - Individualized decision for women before the age of 50
 - Current evidence is insufficient to assess the additional benefits and harms of screening mammography in women 75 years or older.
Limitations of using age-cutoffs alone

- **Under-screening**
 - 40% healthy women aged 80-84 did not have a recent screening mammogram (Schonberg, MaCarthy et al. 2004)

- **Over-screening**
 - 25% women aged 70-74 years with severe cognitive impairment had a recent screening mammogram (Mehta, Fung et al. 2010)
 - 12% women aged 65-74 with advanced cancer at another site had a recent screening mammogram (Sima, Panageas et al. 2010)
Studies continue to use age cutoffs in evaluating screening mammography use

- For example:
 - a study found that poor self-reported health predicted nonadherence to mammography screening and concluded that women with poor health may need more support from their providers to be screened (Gierish, Earp et al. 2010)
Objectives

➢ To develop a methodological framework to
 • Predict life expectancy using both age and comorbidity
 • Define appropriate and inappropriate target population for screening mammography based on life expectancy

➢ To evaluate screening mammography utilization in Texas
 • life-expectancy method vs. age-cutoff method
Methods

- **Data Sources**
 - 100% Texas Medicare data from 2000-2007
 - Medicare enrollment files
 - Carrier files
 - Outpatient Statistical Analysis Files
 - Medicare Provider Analysis and Review files
Methods (con’t)

- Study Subjects
 - Two cohorts
 - The 2001 cohort – to estimate median survival time
 - The 2006 cohort – to estimate screening mammography rates
 - Include women
 - aged 67-90 in Texas
 - with 2-year full coverage of Pt A+Pt B, no HMO
 - no diagnosis of breast cancer or breast mass in the past 2 years
Methods (con’t)

2001 Cohort

Female Medicare age of 67-90 years as of 1/1/2001 and residing in Texas
(n=1,046,907)

Had full coverage of Medicare Parts A and B during 2001-2002
(n=927,034)

Without any HMO coverage during 2001-2002
(n=789,259)

Had no diagnosis of breast cancer and breast mass (ICD-9-CM: 174xx, 2330, and 61172) in the past 2 years
(final 2001 cohort, n=716,279)

2006 Cohort

Female Medicare age of 67-90 years as of 1/1/2006 and residing in Texas
(n=1,103,917)

Had full coverage of Medicare Parts A and B during 2006-2007
(n=979,397)

Without any HMO coverage during 2006-2007
(n=786,238)

Had no diagnosis of breast cancer and breast mass (ICD-9-CM: 174xx, 2330, and 61172) in the past 2 years
(final 2006 cohort, n=697,825)
Methods (con’t)

➤ Measures

• Screening mammography – algorithm by Freeman et al. (2002)
 • Bilateral mammogram
 • No BC, BM dx within the last 2 yrs
 • No any mammogram within the last 11 months

• Life expectancy predicted by
 • Age by 2-year interval
 • Comorbidity Index (none, 1, 2 and 3+)

Estimates of Median Survival Time from the 2001 Cohort → Life expectancy of the 2006 cohort
Median Survival in Years, the 2001 Cohort

<table>
<thead>
<tr>
<th>Age</th>
<th>Median Survival in Years (95% CI) by Comorbidity Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>67-68</td>
<td>>7.0 (n/a)</td>
</tr>
<tr>
<td>69-70</td>
<td>>7.0 (n/a)</td>
</tr>
<tr>
<td>71-72</td>
<td>>7.0 (n/a)</td>
</tr>
<tr>
<td>73-74</td>
<td>>7.0 (n/a)</td>
</tr>
<tr>
<td>75-76</td>
<td>>7.0 (n/a)</td>
</tr>
<tr>
<td>77-78</td>
<td>>7.0 (n/a)</td>
</tr>
<tr>
<td>79-80</td>
<td>>7.0 (n/a)</td>
</tr>
<tr>
<td>81-82</td>
<td>>7.0 (n/a)</td>
</tr>
<tr>
<td>83-84</td>
<td>>7.0 (n/a)</td>
</tr>
<tr>
<td>85-86</td>
<td>6.4 (6.4, 6.5)</td>
</tr>
<tr>
<td>87-88</td>
<td>5.8 (5.7, 5.9)</td>
</tr>
<tr>
<td>89-90</td>
<td>5.1 (5.1, 5.2)</td>
</tr>
</tbody>
</table>
Results (con’t)

Screening Mammography Use, 2006 Cohort

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Total Rate (%) of Screening Mammography by Comorbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>67-68</td>
<td>65711 (55.3)</td>
</tr>
<tr>
<td>69-70</td>
<td>59593 (54.7)</td>
</tr>
<tr>
<td>71-72</td>
<td>53536 (53.7)</td>
</tr>
<tr>
<td>73-74</td>
<td>49109 (52.4)</td>
</tr>
<tr>
<td>75-76</td>
<td>46117 (49.9)</td>
</tr>
<tr>
<td>77-78</td>
<td>41543 (46.7)</td>
</tr>
<tr>
<td>79-80</td>
<td>37820 (42.3)</td>
</tr>
<tr>
<td>81-82</td>
<td>33081 (37.4)</td>
</tr>
<tr>
<td>83-84</td>
<td>28085 (31.2)</td>
</tr>
<tr>
<td>85-86</td>
<td>21123 (25.5)</td>
</tr>
<tr>
<td>87-88</td>
<td>15344 (19.8)</td>
</tr>
<tr>
<td>89-90</td>
<td>10695 (13.3)</td>
</tr>
</tbody>
</table>

Life expectancy (years) – Unshaded: 7+; light shaded: 5 to 7; dark shaded: <5
Limitations

- Could not include other clinically relevant information associated with patients’ life expectancy (e.g., self-rated health, functional status, cancer, severity of comorbid illness) or with risk of breast cancer (e.g. family history)

- The maximum life expectancy we estimated was 7 years

- An individual survival probability may differ from the estimated life expectancy

- Could not evaluate the impact of patient preference in mammography decisions
Conclusions

- The life expectancy method results in better estimates of appropriate and inappropriate screening mammography utilization in the community.
- Future studies to evaluate population-based estimates of screening use should follow this direction.
Variation Among Providers in Screening Mammography for Women with Limited Life Expectancies
Background

- Receipt of screening mammography is commonly used as an indicator of high-quality primary care
- Women with limited life expectancy are unlikely to benefit from screening
Background (con’t)

Receipt of screening mammography among women with limited life expectancies is an indicator of over-utilization, not of high quality

- One quarter of women aged 70-74 years with severe cognitive impairment were screened
- 12% of those aged 65-74 with advanced cancer at another site were screened

The ideal quality indicator would include estimates of the

- Avoidance of overscreening
- Receipt of appropriate screening
Objectives

➢ To assess the feasibility physician level quality measure of screening mammography in women with an estimated life expectancy of less than 7 years
Methods

➢ Subjects

• Data Source: 100% Texas Medicare claims

Female Medicare age of 67-90 years as of 1/1/2008 and residing in Texas (n=1,218,987)

Had full coverage of Medicare Parts A and B during 2008-2009 (n=1,022,543)

Without any HMO coverage during 2008-2009 (n=788,136)

Had no diagnosis of breast cancer and breast mass (ICD -9-CM: 174xx, 2330, and 61172) in the previous 2 years (n=707,464)

Life Expectancy < 7 years (n=166,294)

Women (n=125,593) with an identifiable UCP (n=12,574) in Texas
Methods (con’t)

- Life Expectancy predicted by
 - Age by 2-year interval
 - Comorbidity Index (none, 1, 2 and 3+)

Estimates of Median Survival Time from the 2001 Cohort

Life expectancy of the 2008 cohort
Methods (con’t)

- **UCP**
 - **Definition**
 - physician who saw the woman on 2+ occasions in an outpatient setting for evaluation and management in 2007
 - CPT codes of 99201-99205 and 99211-99215
 - Physician who provided most evaluation and management, if a woman had 1+ identified physicians
 - Physician who provided most recent evaluation and management, if there were ties
 - **Characteristics**
 - Source: linked AMA master file
Methods (con’t)

- Screening Mammography
 - Bilateral mammogram (CPT code of 76091 or 76092)
 - No mammogram within the last 11 months (CPT code of 76090, 76091 and 76092)

- Analysis
 - Descriptive statistics
 - Multilevel modeling
 - Effect of UCP characteristics, adjusting for patient characteristics
 - UCP profiling (3,803 UCPs with 10+ patients)
 - Spearman rank correlation, Wilcoxon signed rank test
 - Stability of UCP profiling over time (2,800 UCPs with 10+ patients in both 2006 and 2008 cohorts)
Results

Screening mammography rate, by age and comorbidity

![Graph showing potential over-screening rate of mammography by age and comorbidity index](image)
Results (con’t)

- Screening mammography rate, by age and life expectancy

![Graph showing potential overscreening rate of mammography by age and life expectancy]
Results (con’t)

- Screening mammography rate, by UCP characteristics

![Graph showing screening mammography rate by various UCP characteristics]
Results (con’t)

- Multilevel analysis of UCP effects on screening mammography use in women with limited life expectancy

<table>
<thead>
<tr>
<th>UCP Characteristics</th>
<th>OR (95% CI)</th>
<th>Model 1 (UCP characteristics only)</th>
<th>Model 2 (add patient characteristics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years): <50 vs. 50+</td>
<td>0.93 (0.90, 0.97)</td>
<td>0.92 (0.88, 0.95)</td>
<td></td>
</tr>
<tr>
<td>Sex: F vs. M</td>
<td>1.31 (1.25, 1.37)</td>
<td>1.29 (1.23, 0.31)</td>
<td></td>
</tr>
<tr>
<td>US Trained: N vs. Y</td>
<td>1.27 (1.22, 1.32)</td>
<td>1.25 (1.20, 1.31)</td>
<td></td>
</tr>
<tr>
<td>Board Certification: N vs. Y</td>
<td>0.91 (0.87, 0.94)</td>
<td>0.91 (0.88, 0.95)</td>
<td></td>
</tr>
<tr>
<td>Panel Size: Q1 vs. Q4</td>
<td>0.92 (0.86, 0.99)</td>
<td>0.86 (0.80, 0.93)</td>
<td></td>
</tr>
<tr>
<td>Panel Size: Q2 vs. Q4</td>
<td>0.87 (0.82, 0.92)</td>
<td>0.84 (0.79, 0.89)</td>
<td></td>
</tr>
<tr>
<td>Panel Size: Q3 vs. Q4</td>
<td>0.96 (0.91, 1.00)</td>
<td>0.94 (0.90, 0.98)</td>
<td></td>
</tr>
<tr>
<td>Specialty: FP vs. IM</td>
<td>0.74 (0.70, 0.77)</td>
<td>0.74 (0.70, 0.77)</td>
<td></td>
</tr>
<tr>
<td>Specialty: OB vs. IM</td>
<td>1.65 (1.42, 1.91)</td>
<td>1.73 (1.48, 2.01)</td>
<td></td>
</tr>
<tr>
<td>Specialty: Ger vs. IM</td>
<td>0.82 (0.64, 1.05)</td>
<td>0.89 (0.69, 1.14)</td>
<td></td>
</tr>
<tr>
<td>Specialty: Other vs. IM</td>
<td>0.67 (0.63, 0.71)</td>
<td>0.67 (0.63, 0.70)</td>
<td></td>
</tr>
</tbody>
</table>
Results (con’t)

- Profiling of UCPs with 10+ patients with a life expectancy less than 7 years in the 2008 cohort (n=3,803)

![Graph showing average rate of mammography overscreening. The average rate is 36.0%.]
Results (con’t)

- The agreement between UCP profiling between 2006 and 2008. The comparison only includes UCPs with 10+ patients with a life expectancy less than 7 years in both cohorts (n=3,803)

<table>
<thead>
<tr>
<th>2006 Cohort</th>
<th>2008 Cohort, row %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quintile 1 (13.9-37.4%)</td>
</tr>
<tr>
<td></td>
<td>Quintile 2 (27.5-32.7%)</td>
</tr>
<tr>
<td></td>
<td>Quintile 3 (32.8-38.3%)</td>
</tr>
<tr>
<td></td>
<td>Quintile 4 (38.4-45.9%)</td>
</tr>
<tr>
<td></td>
<td>Quintile 5 (46.0-74.7%)</td>
</tr>
<tr>
<td>Quintile 1 (11.4-23.6%)</td>
<td>47.5</td>
</tr>
<tr>
<td>Quintile 2 (23.7-28.8%)</td>
<td>29.3</td>
</tr>
<tr>
<td>Quintile 3 (28.9-34.2%)</td>
<td>14.3</td>
</tr>
<tr>
<td>Quintile 4 (34.3-42.5%)</td>
<td>7.7</td>
</tr>
<tr>
<td>Quintile 5 (42.6-78.7%)</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Spearman rank correlation coefficient = 0.65 (P<0.001)
Wilcoxon signed rank test: P=0.62
Results (con’t)
Summary of Results

- The overall screening rate in women with <7 yrs life expectancy was 31.3%.
- Age played a greater role than level of comorbidity in screening mammography use.
- Among UCPs with 10+ patients with limited life expectancy, 2.9% had significantly lower screening rates, 8.6% had significantly higher than average rates.
- UCP profiling was stable over time.
- OB/GYNs were more likely and Family Medicine physicians were less likely to screen patients with limited life expectancy compared to Internal Medicine physicians.
- Female and foreign-trained UCPs were more likely to screen patients with limited life expectancy.
Limitations

- No information on patient preferences
- Only age and comorbidity were used in life expectancy estimates
- The life expectancy estimates may lack precision at the individual level
- The life expectancy for the 2008 cohort were predicted from 2001 estimates. Life expectancy may change over time.
Conclusions

UCP over-screening rates should be considered together with the corresponding appropriate screening rates to achieve a balanced assessment of the quality of screening mammography services at the physician level.
Research Team

- Alai Tan, MD, PhD
- Yong-Fang Kuo, PhD
- Linda S. Elting, Dr.P.H
- James S. Goodwin, MD