Comparative effectiveness of chemotherapy vs resection of the primary tumour as the initial treatment in older patients with Stage IV colorectal cancer

H. B. Mehta*, G. M. Vargas†, D. Adhikari*, F. Dimou‡ and T. S. Riall§

*Departments of Surgery, The University of Texas Medical Branch, Galveston, Texas, USA; †Louisiana State University-Shreveport, Shreveport, Louisiana, USA; ‡University of South Florida, Tampa, Florida, USA, and §University of Arizona, Tucson, Arizona, USA

Received 5 August 2016; accepted 26 January 2017. Accepted Article online 17 March 2017

Abstract

Aim The objectives were to determine trends in the use of chemotherapy as the initial treatment and to evaluate the comparative effectiveness of initial chemotherapy vs resection of the primary tumour on survival (intention-to-treat analysis) in Stage IV colorectal cancer (CRC).

Method This cohort study used 2000–2011 data from the Surveillance, Epidemiology, and End Results (SEER)–Medicare linked database, including patients ≥ 66 years of age presenting with Stage IV CRC. Cox proportional hazards models and instrumental variable analysis were used to compare the effectiveness of chemotherapy as the initial treatment with resection of the primary tumour as the initial treatment, with 2-year survival as the end point.

Results The use of chemotherapy as the first treatment increased over time, from 26.8% in 2001 to 46.9% in 2009 (P < 0.0001). The traditional Cox model showed that chemotherapy as the initial treatment was associated with a higher risk of mortality [hazard ratio (HR) = 1.35; 95% CI: 1.27–1.44]. When accounting for known and unknown confounders in an instrumental variable analysis, chemotherapy as the initial treatment suggested benefit on 2-year survival (HR = 0.68; 95% CI: 0.44–1.04); however, the association did not reach statistical significance. The study findings were similar in six subgroup analyses.

Conclusion The use of chemotherapy as the initial therapy for CRC increased substantially from 2001 to 2009. Instrumental variable analysis found that, compared with resection, chemotherapy as the initial treatment offers similar or better 2-year survival in patients with Stage IV CRC. Given the morbidity and mortality associated with colorectal resection in elderly patients, chemotherapy provides an option to patients who are not good candidates for resection.

Keywords Colorectal cancer, comparative effectiveness research, chemotherapy, surgery, instrumental variable, selection bias

What does this paper add to the literature? The use of chemotherapy as the initial treatment for Stage IV colorectal cancer has increased in the past decade. Chemotherapy as the initial treatment offers similar or better 2-year survival compared with primary resection of the tumour.

Introduction

Colorectal cancer (CRC) is the second leading cause of cancer-related death in the USA [1]. Approximately, 20–30% of patients present with Stage IV disease, and in two-thirds of these patients the CRC is considered unresectable because of the inability to achieve negative margins (R0 resection) on the primary tumour and/or the inability to adequately resect all visible metastatic disease [2]. Historically, Stage IV disease was managed with surgical removal of the primary tumour to prevent complications such as obstruction, bleeding and perforation. The introduction of oxaliplatin or irinotecan to chemotherapy regimens in the 2000s improved tumour response and survival in Stage...
IV disease, triggering changes in treatment paradigms [3–5].

In 2006, systemic therapy was recommended by the National Comprehensive Cancer Network (NCCN) guidelines as the initial treatment in patients with unresectable metastatic disease [6]. For resectable Stage IV disease, the NCCN recommends a multimodality approach of both systemic therapy and surgical resection of the primary tumour and metastatic disease; in this ‘curative’ setting, the recommendations suggest that systemic therapy can be delivered before or after surgery [7]. Current guidelines, however, are not based on Level I evidence, and considerable debate remains regarding the best initial treatment for resectable and unresectable synchronous metastatic CRC (systemic therapy vs resection of the primary tumour with or without metastasectomy) [8–13].

Our goal was to evaluate population-based trends in the use of chemotherapy as the initial treatment and to compare the effectiveness of chemotherapy with resection of the primary tumour, as initial treatment, on the survival (intention-to-treat analysis) of older patients with Stage IV CRC and asymptomatic primary tumours. We hypothesized significant confounding by indication and therefore used both traditional multivariable models and instrumental variable analysis to control for unmeasured confounding.

Method

Data source

We used data from 2000 to 2011 from the Surveillance Epidemiology and End Results (SEER)–Medicare linked database. Medicare files used for this study included the Denominator file (demographics and eligibility), the Medicare Provider Analysis and Review (MedPAR) file, the Carrier claim file and the Outpatient Standard Analytical File.

Study cohort

We studied older patients (age ≥ 66 years) with histologically confirmed Stage IV CRC from 2001 to 2009 who were continuously enrolled in Medicare and received treatment (either chemotherapy or resection) for CRC. We excluded the following: patients who received emergency or urgent resection of the primary tumour as identified from the MedPAR file; patients with symptomatic tumour, defined as those with a primary diagnosis of bleeding, perforation, obstruction or septic shock; and patients with missing health service area (HSA) information or those in HSAs having fewer than 15 patients.

Treatment

The primary variable of interest was the use of chemotherapy or resection of the primary tumour as the initial treatment. Use of chemotherapy was identified using Healthcare Common Procedure Coding System (HCPCS) Codes, the International Classification of Diseases, Ninth Revision Clinical Modification (ICD-9-CM) procedure and diagnosis codes, J codes and revenue centre codes (Appendix S1). Resection of the primary tumour was identified using the ICD-9-CM procedure and Current Procedural Terminology, Fourth Edition (CPT-4) codes for colorectal resections (Appendix S1). We determined the date of first chemotherapy use and/or date of resection of the primary tumour. Whichever was earlier was considered as the initial treatment.

Outcome

The primary outcome measure was 2-year cancer-specific survival from the date of initial treatment as the 5-year survival rate for Stage IV colorectal cancer is low (12.5%) and current chemotherapy mainly improves the 2-year survival rate [1,4]. Furthermore, the study used an intention-to-treat analysis approach to compare the initial treatment modality.

Covariates

Covariates were selected based on prior studies and clinical knowledge. We included age, sex, race/ethnicity, Medicare/Medicaid dual-eligibility status, SEER region, year of diagnosis, cancer type, resection of metastatic disease (metastasectomy), Charlson comorbidity score and function-related indicators. All covariates were assessed in a year prior the cancer diagnosis date. Metastasectomy was defined as liver or pulmonary resection and identified using CPT and ICD-9-CM procedure codes (Appendix S1). Comorbidity was assessed using the Charlson comorbidity score [14,15]. To capture the functional status of patients, we included the following indicators: mobility; blood transfusion; oxygen use; sepsis; malnutrition; fall-related injury; and syncope [16]. Multimodality therapy (i.e. patients who received chemotherapy then resection of the primary tumour or vice versa), metastasectomy and receipt of radiation were included as time-dependent covariates.

Descriptive analysis

Descriptive statistics were used to describe the study cohort. A Cochran-Armitage test for trend was used to
evaluate time trends. Baseline covariates between the two treatment groups were compared using standardized difference scores. Unlike the t-test or χ^2 test, the standardized difference is not affected by sample size and can be used to compare baseline characteristics between two groups. A standardized difference of 0.2 (or 20%) indicates a small effect size and comparability between two groups [17,18]. The Kaplan–Meier method was used to determine the unadjusted survival time curve for two treatment groups.

Cox proportional hazards regression analysis

First, we constructed unadjusted Cox proportional hazards regression models to determine the association of initial treatment with survival. Then, a multivariable Cox proportional hazards regression, which only controls for measured confounding, was used to evaluate the association between initial treatment and survival after adjusting for potential confounders.

Instrumental variable analysis

Instrumental variable analysis is a useful method to control for selection bias and unmeasured confounding in observational comparative effectiveness research studies [19,20]. In our study there were multiple potential sources of unmeasured confounding. Patients receiving chemotherapy first may have had a greater burden of metastatic disease and been sicker than those who underwent initial surgery. A patient’s likelihood of receiving chemotherapy first may be determined by the Eastern Cooperative Oncology Group (ECOG) or Karnofsky performance status (KPS). However, these variables are not captured in the SEER–Medicare data, making it difficult to estimate the true effect of treatment on the outcome. We used the percentage of those receiving initial chemotherapy within the IISA as the instrumental variable. This instrumental variable has been used in previous comparative effectiveness studies [21,22]. It acts as a natural randomization of patients to regional IISA-based treatment groups that determine the likelihood of receiving chemotherapy as the initial treatment [20–22]. Thus, instrumental variable analysis exploits the natural variation in treatment choice and uses that to control for unmeasured confounding [20]. A good instrument should affect treatment, should be unrelated to patient characteristics and should be related to the outcome only through its association with treatment [19]. We used the partial F-test to confirm that the instrument is strongly correlated with the treatment. An F statistic of larger than 10 suggests that the instrument is strong. To confirm that the instrument is not related to outcome through patient characteristics we evaluated the balance of covariates across the level of the instrument (below and above the median value of an instrumental variable). We used the two-stage residual inclusion (2SRI) method for instrumental variable analysis [23]. We performed the following sensitivity analyses: (i) included only patients with colon cancer; (ii) stratified the analysis according to age group (< 75 years and ≥ 75 years) to determine the role of age; (iii) stratified the analysis according to time period (2001–2004 and 2005–2009); and (iv) excluded patients who underwent resection of metastatic disease. We used the Bonferroni correction method with a significance level of 0.0083 (0.05/6) to adjust for multiplicity while performing subgroup analysis.

All analyses were performed using SAS version 9.4 (SAS Inc., Cary, North Carolina, USA). Statistical significance was accepted at the $P < 0.05$ level. The Institutional Review Board at the University of Texas Medical Branch exempted the study from review.

Results

Cohort description and baseline characteristics

The final cohort included 6368 patients (Fig. 1). The mean age of the cohort was 76.0 ± 6.5 years, 50.9% were female and 85.4% were White (Table 1). As the initial treatment, 2216 (34.8%) received chemotherapy and 4152 (65.2%) underwent resection of the primary tumour. The median time from diagnosis to receipt of first treatment was 33 (interquartile range: 21–49) days. Patients who received chemotherapy as the initial treatment were more likely to be younger, have rectal cancer as primary cancer and be less likely to undergo metastectomy compared with those who received resection first (Table 1).

The use of chemotherapy as the initial treatment increased from 26.8% in 2001 to 46.9% in 2009 ($P < 0.0001$). In rectal cancer, initial chemotherapy increased from 41.4% in 2001 to 59.8% in 2009 ($P < 0.0001$); in colon cancer, it increased from 23.0% to 43.6% in the same time period ($P < 0.0001$, Fig. 2). Overall, 45.1% ($n = 2875$) of patients received multimodality therapy, with 16.4% ($n = 363$) of patients who initially received chemotherapy having subsequent surgical resection and 60.5% ($n = 2512$) of patients who underwent initial resection receiving subsequent chemotherapy. Among patients who received chemotherapy as the initial treatment ($n = 2216$), 3.9% underwent subsequent emergency or urgent resection in the 2-year follow-up period. Patients who underwent resection of the primary tumour as the initial treatment
Elderly patients with histologically confirmed stage IV colorectal cancer who received treatment for their cancer \((N = 11,367) \)

Exclude patients with emergent/urgent resection of the primary tumor \((N = 4,582) \)

Patients who received chemotherapy or elective resection as the initial treatment modality \((N = 6,785) \)

Exclude patients with diagnosis of bleeding, perforation, obstruction or septic shock \((N = 219) \)

Patients with non-symptomatic tumor \((N = 6,566) \)

Exclude patients with missing HSA information or less than 10 patients in each HSA \((N = 198) \)

Final Cohort \((N = 6,388) \)

Figure 1 Cohort selection diagram. HSA, health service area.

in 2007 to 2009 \((n = 1,646) \) were more likely to be older and to have higher Charlson comorbidity scores compared with patients who underwent resection in 2001 to 2003 \((n = 1,011) \); for all other characteristics, both groups were similar.

In the unadjusted Kaplan–Meier analysis, the overall 2-year survival was better in patients who received resection of the primary tumour as the first treatment compared with chemotherapy (Fig. 3). Similar results were found for a subset of patients with colon cancer only (Appendix S2).

Multivariable Cox regression

In the unadjusted analysis, chemotherapy as the initial treatment was associated with a 35% higher risk of 2-year mortality \((HR = 1.35; 95\% CI: 1.27–1.44) \). This association was attenuated to 26%; however, it remained significant after controlling for all confounders in a multivariable Cox proportional hazards regression model \((HR = 1.26; 95\% CI: 1.16–1.36) \) (Table 2).

Instrumental variable analyses

The percentage use of chemotherapy as the initial treatment ranged from 10% to 80.6% across 100 HSAAs (Appendix S3). The F-statistic value was 62.4, indicating that the instrument was strongly correlated with the treatment. In addition to the balance of baseline characteristics across the level of exposure, Table I also demonstrates the balance of baseline characteristics above and below the median value of the instrumental variable (36%). In the original cohort, substantial imbalance existed between treatment groups, suggesting strong selection bias in the receipt of initial treatment. When patient characteristics were compared using the
Table 1: Balance of baseline patient characteristics across treatment groups and the median level of the instrumental variable.

<table>
<thead>
<tr>
<th>Patient characteristics</th>
<th>Patient treatment status</th>
<th>Instrumental variable status (initial chemotherapy rate by HSA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resection of primary</td>
<td>Below median</td>
</tr>
<tr>
<td></td>
<td>tumour as initial</td>
<td>(≤ 36%)</td>
</tr>
<tr>
<td></td>
<td>treatment</td>
<td>median</td>
</tr>
<tr>
<td></td>
<td>Chemotherapy as initial</td>
<td>26.6</td>
</tr>
<tr>
<td></td>
<td>treatment</td>
<td></td>
</tr>
<tr>
<td>Number of patients</td>
<td>4152</td>
<td>3169</td>
</tr>
<tr>
<td>Age (years)</td>
<td>76.6 ± 6.8</td>
<td>75.37 ± 6.5</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
<td>1956 (47.4)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>2186 (52.6)</td>
</tr>
<tr>
<td>Race</td>
<td>White</td>
<td>3569 (86.0)</td>
</tr>
<tr>
<td></td>
<td>Non-White</td>
<td>583 (14.0)</td>
</tr>
<tr>
<td>Medicare-Medicaid dual</td>
<td>632 (15.2)</td>
<td>367 (16.6)</td>
</tr>
<tr>
<td>Charlson comorbidity</td>
<td>0</td>
<td>2437 (58.7)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1060 (25.5)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>388 (9.3)</td>
</tr>
<tr>
<td></td>
<td>≥ 3</td>
<td>267 (6.4)</td>
</tr>
<tr>
<td>Summary Charlson</td>
<td>0 (0, 2)</td>
<td>0 (0, 2)</td>
</tr>
<tr>
<td>comorbidity score</td>
<td>Function-related indicators</td>
<td>Mobility</td>
</tr>
<tr>
<td></td>
<td>Blood transfusion</td>
<td>423 (10.2)</td>
</tr>
<tr>
<td></td>
<td>Oxygen use</td>
<td>128 (3.1)</td>
</tr>
<tr>
<td></td>
<td>Sepsis</td>
<td>56 (1.3)</td>
</tr>
<tr>
<td></td>
<td>Malnutrition</td>
<td>119 (2.9)</td>
</tr>
<tr>
<td></td>
<td>Fall-related injury</td>
<td>501 (12.1)</td>
</tr>
<tr>
<td></td>
<td>Syncope</td>
<td>246 (5.9)</td>
</tr>
<tr>
<td>Cancer type</td>
<td>Colon</td>
<td>3460 (83.5)</td>
</tr>
<tr>
<td></td>
<td>Rectum</td>
<td>686 (16.5)</td>
</tr>
<tr>
<td>Metastasectomy</td>
<td>Year of diagnosis</td>
<td>1047 (25.2)</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>575 (13.9)</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>543 (13.1)</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>557 (13.4)</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>542 (13.4)</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>502 (12.1)</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>433 (10.4)</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>384 (9.5)</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>328 (7.9)</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>278 (6.7)</td>
</tr>
</tbody>
</table>

Values are given as %, n (%), mean ± SD and median (Q1, Q3).

HSA, health service area.

The median level of the instrumental variable, the standardized difference was attenuated (< 0.20 for all variables).

All variables were also well balanced across the level of instrumental variable quintiles (Appendix S4). The instrumental variable analysis that accounted for both known and unknown confounders found that patients receiving chemotherapy as the initial treatment had a lower risk of mortality (HR = 0.68; 95% CI: 0.44–1.04) compared with those undergoing resection of the primary tumour as the initial treatment; however, the association approached, but did not reach, statistical significance (Table 2).
Sensitivity analyses

Results of sensitivity analyses were similar to those of the main analysis in a subgroup of patients with colon cancer, in patients between 65 and 74 years of age, in patients over 75 years of age, in both time periods (2001–2004 and 2005–2009) and when we excluded patients with metastasectomy from the analysis. All sensitivity analyses results are reported in Table 2 and Appendix S5.

Discussion

The study found that the use of chemotherapy as the initial treatment for older patients presenting with asymptomatic unresectable Stage IV CRC has increased in the last decade. Patients receiving initial surgery vs chemotherapy in Stage IV had improved survival outcomes in unadjusted and in standard multivariate models. When accounting for measured and unmeasured confounders using an instrumental variable analysis, chemotherapy as the initial treatment showed benefit on survival compared with initial surgical resection. However, this association did not achieve statistical significance. The results were similar in all six subgroup analyses.

To date, randomized controlled trials (RCT) attempting to compare survival following either chemotherapy or surgical resection of the primary tumour as the initial treatment have had difficulty accruing patients [8]. We used observational data and an instrumental variable approach to address this issue, as we hypothesized significant unmeasured confounding by indication. Traditional Cox regression showed that chemotherapy as the initial treatment was associated...
with worse 2-year survival compared with resection of the primary tumour. In the instrumental variable analysis, the association was not only attenuated but direction of the association was reversed, showing improved survival for patients receiving initial chemotherapy. However, it was not statistically significant as the confidence interval included the value 1.

Traditionally, resection of the primary tumour was preferred in patients with Stage IV CRC to prevent tumour-related complications such as obstruction, perforation, and bleeding [9]. The introduction of oxaliplatin and irinotecan to chemotherapy regimens has challenged this approach. The NCCN guidelines changed in 2006 [7]. Population-based SEER-Medicare data from 1991 to 2000 demonstrated that only 12.2% of patients with Stage IV CRC received chemotherapy as the initial treatment [24]. Our study covers a period that relates more to that of the present day, and demonstrates an increasing trend for chemotherapy as the initial treatment, increasing to 34.8% over the whole period and reaching 47% in 2009. A recent study based on SEER data showed a reduction in the proportion of patients undergoing primary tumour resection, from 74.5% in 1998 to 57.4% in 2010. However, the median survival rate increased during the same period [25]. The improved survival may be attributed to the improved treatment as a result of the increased use of chemotherapy.

Despite NCCN guidelines, significant controversy remains regarding the timing and role of surgical resection and potential overuse of primary tumour resection in patients presenting with Stage IV disease [9, 25]. Our study supports the findings of a meta-analysis of seven observational studies which concluded that initial resection of the tumour provides only minimal palliative benefit but higher complication rates that can delay the administration of systemic chemotherapy [11]. The Cochrane collaboration found that resection of the primary tumour did not improve survival or reduce complications in asymptomatic patients with resectable Stage IV CRC managed with initial chemotherapy/radiation [8]. Another meta-analysis of eight observational studies comparing chemotherapy alone with chemotherapy and surgical resection showed an improvement in the survival of patients managed with palliative resection of their primary tumour [12]. However, these studies were retrospective, small and subject to considerable selection bias. A recent study, not included in any of the above meta-analyses, found that resecting the primary tumour in patients receiving chemotherapy for Stage IV CRC did not improve overall survival when resection of all gross disease was impossible (unresectable), supporting the use of chemotherapy as the initial treatment in patients with unresectable disease [26].

In subgroup analysis, we found improved, but not significant, survival benefit of chemotherapy as the initial treatment among patients 65–74 years of age. These results were in accordance with some previous studies that also found improved survival in patients younger than 75 years of age [27, 28]. In addition, more patients in the younger age group (14% vs 11%) underwent surgery after chemotherapy, possibly explaining the survival benefit in this group. These patients are likely to represent a selected group of patients with good tumour response who opted for more aggressive therapy and suggests an additional survival benefit with removal of the primary tumour, even in the palliative setting.

In clinical practice, the choice of initial treatment may be influenced by disease burden, frailty and patient preference. Chemotherapy as the initial treatment offers several advantages. Initial chemotherapy eliminates the immediate risk of operative complications that prevent treatment with systemic chemotherapy [9, 11].

Table 2 Association of chemotherapy as the initial treatment with survival.

<table>
<thead>
<tr>
<th>Chemotherapy as the initial treatment (Ref = resection of the primary tumour as the initial treatment)</th>
<th>All patients hazard ratio (95% CI)</th>
<th>Colon cancer patients hazard ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unadjusted Cox model</td>
<td>1.35 (1.27–1.44)</td>
<td>1.48 (1.35–1.63)</td>
</tr>
<tr>
<td>Adjusted Cox model*</td>
<td>1.26 (1.16–1.36)</td>
<td>1.36 (1.20–1.54)</td>
</tr>
<tr>
<td>Instrumental variable analysis†‡</td>
<td>0.68 (0.44–1.04)</td>
<td>0.78 (0.39–1.54)</td>
</tr>
</tbody>
</table>

*Model was adjusted for age, gender, race, dual-eligibility status, regions, Charlson comorbidity score, function-related indicators (mobility, blood transfusion, oxygen use, sepsis, malnutrition, fall-related injury, syncope), cancer type, year and time-dependent covariates (such as receipt of multimodality therapy, metastasectomy and radiation).

†Model was adjusted for residuals obtained from the first stage of instrumental variable analysis and age, gender, race, dual-eligibility status, regions, Charlson comorbidity score, function-related indicators (mobility, blood transfusion, oxygen use, sepsis, malnutrition, fall-related injury, syncope), cancer type, year and time-dependent covariates (such as receipt of multimodality therapy, metastasectomy and radiation).

†F-statistics for instrumental variable = 62.4.
Resection can then be reserved for patients who respond to chemotherapy and would probably benefit from this approach. A prospective multicentre phase II trial, RCTs, systematic reviews and meta-analysis have all demonstrated that chemotherapy is a safe initial treatment [12, 13, 29, 30]. In patients with chemotherapy as the initial treatment, the rate of complications ranged from 6% to 29% [11]. In our study, less than 4% of patients who received chemotherapy as initial treatment underwent subsequent emergent or urgent resection.

The results from an instrumental variable analysis differed significantly from those obtained using the Cox model. Use of instrumental variable analysis changed the direction of the association. Cox regression models cannot control for unmeasured confounding, which was controlled for in the instrumental variable analysis. This may explain the increase in HR. Instrumental variable analysis makes strong assumptions and some are not empirically verifiable. There is really no way to know which of these answers is ‘correct’; violation of assumptions may produce biased estimates. However, in this study, instrument was strongly correlated with treatment (F = 62.4) and covariates were well balanced by the level of instrumental variable.

Our study has several limitations. We cannot measure KPS or ECOG, burden of disease, or whether chemotherapy was given with intent to downstage and resect. However, our instrumental variable analysis was designed to overcome some of this selection bias and unmeasured confounding. Our approach is unique in that we compared outcomes on an intent-to-treat basis, based on initial treatment strategy, regardless of receipt of the other modality. This is important because patients who initially undergo surgery often do not get chemotherapy secondary to surgical complications. Our analysis supports this observation. Patients who had surgery and no chemotherapy had the worst survival. Likewise, given the controversy regarding the need for resection in Stage IV disease, this approach included patients who did and did not undergo surgery after chemotherapy. It is possible that patients who responded to chemotherapy received aggressive treatment with surgical resection, while those who progressed did not. This scenario would explain the change in the direction and magnitude of the HR when we used the instrumental variable and controlled for selection bias. The instrumental variable captures ‘practice style’ in the geographical region and is unlikely to be related to patient survival [19–22]. The study results are applicable to Medicare patients only. We did not perform a subgroup analysis on patients with rectal cancer because the sample size was too small. While we tried to exclude patients with symptomatic tumours, such patients may not have been excluded if the symptoms were not recorded correctly in the Medicare data.

In conclusion, the use of chemotherapy as the initial treatment has increased from 2001 to 2009. In patients with Stage IV CRC, chemotherapy as the initial treatment offers similar or better 2-year survival compared with primary resection of the tumour, with higher survival benefit among patients younger than 75 years of age. The goal of therapy is to optimize outcomes. Given the morbidity and mortality associated with colorectal resection in elderly patients, chemotherapy provides an option to patients who are not good candidates for resection. In patients with a large burden of disease or those who progress, surgery can be avoided.

Acknowledgements

The authors thank Sarah Toombs Smith, PhD, Science Editor and Assistant Professor in the Scalby Center on Aging, University of Texas Medical Branch at Galveston, for her editorial assistance.

Funding

Cancer Prevention Research in Texas Grant #RP160674, Clinical and Translational Science Award #UL1 TR000071, (NIH T-32) Grant # (5T32DK007639), AHRQ Grant #1R24HS022134, and NCI Grant (K05 CA134923).

Conflicts of interests

None.

References

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Appendix S1. ICD-9, CPT, and J-Codes Used to Identify Symptoms and Treatment in Patients Treated for Stage IV Colorectal Cancer

Appendix S2. Kaplan-Meier Curve for 2-year Survival for Colon Cancer Patients, Stratified by the Initial Treatment Modality

Appendix S3. (A) Variation in Use of Chemotherapy as the First Modality across Health Service Area (HSA), (B) Variation in Use of Chemotherapy as the First Modality across Health Service Area (HSA) within SEER region

Appendix S4. Balance of Patient Characteristics across Quintiles of Instrumental Variable

Appendix S5. Sensitivity Analyses Result: Association of Chemotherapy as the Initial Treatment with Survival