Identifying Geographic & Socioeconomic Disparities in Access to Care for Pediatric Cancer Patients in Texas

Mary T. Austin, MD, MPH
Assistant Professor, Pediatric Surgery
University of Texas Health Science Center at Houston Medical School
& University of Texas MD Anderson Cancer Center
- Background
- Specific Aims
- Methods
- Preliminary Results
- Future Work
• Disparities in cancer burden and access to care are well described in adults
• Poorly defined in pediatric population
• Few studies exist
• Focus only on racial & ethnic disparities
• Limited information on geographic & socioeconomic barriers to care in children
What is published in pediatric literature?

- Comprehensive review of literature
- Most studies focus on racial variability in hematologic malignancies
- Few studies evaluate patients with solid tumors
- Few studies evaluate geographic or socioeconomic impact
• Why?
 • Socioeconomic & health insurance coverage
 • Access to care
 • Knowledge about cancer diagnosis, treatment, and toxicities
 • Cancer surveillance
 • Risky health behaviors
 • Disease biology
• All Norwegian children diagnosed with cancer between 1974-2007
• Mortality decreased in patients with educated mothers & no siblings
• No difference associated with marital status of parents, combined earnings, mother’s age at diagnosis
The Association Between Socioeconomic Status and Survival Among Children With Hodgkin and Non-Hodgkin Lymphomas in a Universal Health Care System

Denise Darmawikarta, MPH, Jason D. Pole, PhD, Sumit Gupta, MD, Paul C. Nathan, MSc, MD, and Mark Greenberg, MB, ChB

Nutritional and socio-economic status in the prognosis of childhood acute lymphoblastic leukemia

Marcos Borato Viana, Rachel Aparecida Ferreira Fernandes, Benigna Maria de Oliveira, Mitiko Murao, Cybele de Andrade Paes, Antônio Alves Duarte
Department of Pediatrics, Federal University of Minas Gerais; Hematology Division, Hospital das Clínicas, Federal University of Minas Gerais, Brazil

Influence of Socioeconomic Status on Childhood Acute Lymphoblastic Leukemia Treatment in Indonesia

Saskia Mostert, Mei N. Sitaresmi, Chad M. Gundy, Sutaryo and Anjo J. P. Veerman
Pediatrics 2006;118:e1600; originally published online October 30, 2006;
• California Cancer Registry
• All patients with Hodgkin Lymphoma age 15-40 years
• Advanced stage HL associated with
 – Male sex
 – Lower SES
 – Uninsured or public health insurance
• Population-based data from Australian Paediatric Cancer Registry

• Australian Standard Geographical Classification Remoteness Areas

• Index of Relative Socioeconomic Disadvantage
• Children from remote/very remote areas lower survival rate (HR 1.55, 95% CI 1.08-2.23)

• Trend towards lower survival in patients from most disadvantaged areas (p=0.051)
• Literature review on diagnosis delays in childhood cancer
• 3 Categories: patient and/or parent, disease and healthcare system
• Healthcare factors included distance, number of visits, and first health professional contacted
• Mixed results
• No previous studies evaluate the impact of geography on pediatric cancer burden and outcomes in US
• Few studies evaluate socioeconomic factors related to pediatric cancer
• Texas provides geographic, racial & socioeconomic diversity in a large population
Specific Aim 1

• 1A – To determine if patient distance to definitive cancer care impacts stage at diagnosis.

• 1B – To determine if patient distance to definitive cancer care impacts survival.
Hypotheses

• Patients with longer distances to definitive cancer care present with later stage disease.

• Patients with longer distances to definitive cancer care have worse overall survival.
Data Sources

• Texas Discharge Data
 – To identify pediatric cancer treatment centers & map centers

• Texas Cancer Registry
 – All pediatric (age ≤ 18 years) patients included in TCR between 1995 and 2009
Independent Variables

• Distance
 – Miles from residence to pediatric cancer treatment center

• Confounders
 – Age
 – Sex
 – Race
 – Stage (except leukemia patients)
Dependent Variables

• Stage at diagnosis
 – Exclude leukemia patients
• Median survival & mortality risk
Diagnostic Groups

- Leukemia
 - Acute lymphoblastic leukemia (ALL)
 - Acute myeloid leukemia (AML)
- Lymphoma
- CNS solid tumor
- Non-CNS solid tumor
- Retinoblastoma
Statistical Analysis

• Logistic regression
• Kaplan-Meier survival analysis
• Cox proportional hazards model
Pediatric Cancer Treatment Centers in Texas

1. Children’s Medical Center Dallas, Dallas
2. Cook Children’s Medical Center, Fort Worth
3. Covenant Children’s Hospital, Lubbock
4. Dell Children’s Medical Center of Central Texas, Austin
5. Doctor’s Hospital-Renaissance, McAllen
6. Driscoll Children’s Hospital, Corpus Christi
7. MD Anderson Cancer Center, Houston
8. Medical City Dallas Hospital, Dallas
9. Methodist Children’s Hospital of South Texas, San Antonio
10. Providence Memorial Hospital, El Paso
11. Scott and White Memorial Hospital, Temple
12. Texas Children’s Hospital, Houston
13. Christus Santa Rosa Children’s Hospital, San Antonio
Demographic Results

- 16,790 patients
- 54% male

Race

- White N=7492 (45%)
- Hispanic N=6895 (41%)
- Black N=1671 (10%)
- Other/Unknown N=732 (4%)
Diagnostic Groups

- **Retinoblastoma**
 - N=350
 - (2%)

- **CNS**
 - N=3137
 - (19%)

- **Non-CNS Solid**
 - N=6452
 - (38%)

- **Leukemia**
 - N=4764
 - (28%)

- **Lymphoma**
 - N=2087
 - (12%)
Pediatric Cancer Cases in Texas
Distance

• Median distance 15.4 miles
• Range 0.01-224 miles
 o 65% < 25 miles
 o 14% 25-49 miles
 o 11% 50-99 miles
 o 10% 100 or more miles
Does distance affect stage?

- No association between median distance to a treatment center and stage at presentation
- No association between categorical distance and stage at presentation
Does distance affect survival?

• No association between distance and risk of mortality
• No association between distance and survival
Survival Estimates for Children with Non-CNS Solid Tumors
Multivariate Cox Proportional Hazard Model

Leukemia

<table>
<thead>
<tr>
<th>Variable</th>
<th>Hazard Ratio</th>
<th>95% CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Female</td>
<td>1.078</td>
<td>0.948, 1.226</td>
</tr>
<tr>
<td>Race</td>
<td>Black</td>
<td>1.331</td>
<td>1.045, 1.697</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1.334</td>
<td>1.165, 1.550</td>
<td><0.0001*</td>
</tr>
<tr>
<td>Other</td>
<td>0.891</td>
<td>0.576, 1.377</td>
<td>0.60</td>
</tr>
<tr>
<td>Age (mos)</td>
<td>1.003</td>
<td>1.002, 1.004</td>
<td><0.0001*</td>
</tr>
</tbody>
</table>
Multivariate Cox Proportional Hazard Model

Lymphoma

<table>
<thead>
<tr>
<th>Variable</th>
<th>Hazard Ratio</th>
<th>95% CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Female</td>
<td>0.952</td>
<td>0.727, 1.245</td>
</tr>
<tr>
<td>Race</td>
<td>Black</td>
<td>1.477</td>
<td>1.012, 2.155</td>
</tr>
<tr>
<td></td>
<td>Hispanic</td>
<td>0.947</td>
<td>0.704, 1.273</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>0.459</td>
<td>0.145, 1.454</td>
</tr>
<tr>
<td>Age (mos)</td>
<td></td>
<td>0.997</td>
<td>0.995, 0.999</td>
</tr>
<tr>
<td>Stage</td>
<td>Regional</td>
<td>1.166</td>
<td>0.767, 1.774</td>
</tr>
<tr>
<td></td>
<td>Distant</td>
<td>2.038</td>
<td>1.455, 2.853</td>
</tr>
</tbody>
</table>
Multivariate Cox Proportional Hazard Model
CNS Solid Tumors

<table>
<thead>
<tr>
<th>Variable</th>
<th>Hazard Ratio</th>
<th>95% CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Female</td>
<td>1.040</td>
<td>0.895, 1.207</td>
</tr>
<tr>
<td>Race</td>
<td>Black</td>
<td>1.427</td>
<td>1.128, 1.805</td>
</tr>
<tr>
<td></td>
<td>Hispanic</td>
<td>1.419</td>
<td>1.203, 1.674</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>1.393</td>
<td>0.921, 2.106</td>
</tr>
<tr>
<td>Age (mos)</td>
<td></td>
<td>0.997</td>
<td>0.996, 0.998</td>
</tr>
<tr>
<td>Stage</td>
<td>Regional</td>
<td>1.321</td>
<td>1.065, 1.639</td>
</tr>
<tr>
<td></td>
<td>Distant</td>
<td>1.790</td>
<td>1.410, 2.273</td>
</tr>
</tbody>
</table>
Multivariate Cox Proportional Hazard Model
Non-CNS Solid Tumors

<table>
<thead>
<tr>
<th>Variable</th>
<th>Hazard Ratio</th>
<th>95% CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Female</td>
<td>0.942</td>
<td>0.829, 1.070</td>
</tr>
<tr>
<td>Race</td>
<td>Black</td>
<td>1.433</td>
<td>1.178, 1.743</td>
</tr>
<tr>
<td></td>
<td>Hispanic</td>
<td>1.069</td>
<td>0.931, 1.229</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>0.872</td>
<td>0.567, 1.342</td>
</tr>
<tr>
<td>Age (mos)</td>
<td></td>
<td>0.998</td>
<td>0.997, 0.999</td>
</tr>
<tr>
<td>Stage</td>
<td>Regional</td>
<td>1.702</td>
<td>1.420, 2.039</td>
</tr>
<tr>
<td></td>
<td>Distant</td>
<td>3.722</td>
<td>3.181, 4.355</td>
</tr>
</tbody>
</table>
Specific Aim 2

- 2A - To determine if patient’s socioeconomic status impacts stage of disease at presentation.

- 2B - To determine if patient’s socioeconomic status impacts survival.
Limitations

• Confounding variables differ between specific cancer diagnoses
• Treatment variability
 – Type, intensity, frequency, duration
• Age significant but not linear
• Missing data
Future Work

• Does distance affect time from diagnosis to 1st treatment?
• Adherence to COG treatment protocols
• Financial burden for traveling families
Thank You

Linda Elting, DrPH
Hoang Nguyen, PhD
Yu-Chia Chang, MPH
Jan Eberth, PhD
Dennis Hughes, MD, PhD
Melanie Williams, PhD